群馬県立自然史博物館における
燻蒸の見直しについて

The Revision of Fumigation in Gunma Museum of Natural History

野村正弘* 大森威宏*  
Masahiro NOMURA Takehiro OHMORI

1 はじめに

土壌消毒剤や検疫熏蒸剤として重要な亜化メチルは、1992年に開催された第4回オゾン層破壊する物質に関するモントリオール議定書締約国会合においてオゾン層破壊物質に指定された。1995年からその生産量・消費量を基準年（1991年）の実績値以下にするよう制限するとともに、2010年全廃までの削減スケジュールが決められていたが、1997年に開催された第9回締約国会合でスケジュールが前倒しされた。先進国においては、検疫及び出荷前処理などのほか不可欠用途を除けば、2005年1月1日をもって全廃することが決されてきた（図1）。

博物館の熏蒸は換気には相当しない。不可欠用途の基準を表1に示すが、不可欠用途として申請し許諾を得るのはきわめて困難と考えられる。このまま

表1 亜化メチル不可欠用途の基準と決定手続

| 不可欠用途の基準 | ①亜化メチルが利用できないことにより、その商品市場に著しい混乱が生じるため、亜化メチルの使用が不可欠であること、かつ
| ②代替方法あるいは代替品がない、技術的にも経済的には実行可能な技術がないこと
| ③亜化メチルの不可欠使用と放漏を最小限とするための技術的経済的措置をとること |

不可欠用途の決定手続

①上記基準に適合している亜化メチルの不可欠な用途を締約国が議定書事務局へ申請
②技術経済評価パネル（専門家会合）で、上記の基準に適合しているかを評価し、締約国会合に勧告

では、群馬県立自然史博物館（以下、館と略す）が現在行っている亜化メチルおよび亜化メチル・酸化エチレン混合剤を使用した熏蒸は、事実上不可能になる。

当館では、大きさ形とも多様で多量の資料に対し、短期間で確実な効果を上げることができることから熏蒸が行われてきた。日本という高温、多湿な気候では、虫および微生物の生物被害を想定した対策が必要となる（三浦、2002MS）。第一には、薬剤を用いない方法を検討するべきではあるが、大型哺乳類

図1 亜化メチル全廃までの削減スケジュール

平成14年1月25日受理
などの資料を処理することが可能な低酸素処理（木川ほか，1999）装置や高温または低温処理（木川ほか，1998）装置に、多額の費用を投じて速やかに切り替えができないのが現状である。そこで、一時的に新たな薬剤での炊蒸に切り替え、保存処理について議論していくことにした。

以上のことから、当館では臭化メチルに変わる薬剤の検討を進め、ヨウ化メチルによる炊蒸を行ったので、その経緯をまとめた。また、作業の中で得られいくつかの新知見を報告する。

2 代替薬剤の検討

前項で述べたように、使用する薬剤については虫および黴菌に効果のある薬剤の中から検討を行った。現時点で使用できる臭化メチルの代替薬剤としては、以下のものが考えられる。

以下に、それぞれの化学物質として特徴を、国際化学物質安全性計画が作成している国際化学物質安全性カード（国立医薬品食品衛生研究所，2002）より引用し簡単にまとめてみる。なお薬品についてはICSC番号を付記したので詳細は、国立医薬品食品衛生研究所のホームページ（http://www.nihs.go.jp/ICSC/）上で国際化学物質安全性カードを検索していただきたい。

①プロピレンオキシド（ICSC No.0192）・アルゴン（ICSC No.0154）希釈剤

プロピレンオキシドは、引火点約37℃、空気中爆発限界2〜38.5 vol.％の気体である。蒸気は空気より重く、遠距離火災の可能性がある。塩基、酸、金属塩化物の影響で激しく重合する。塩素、アンモニア、強酸化剤、酸と激しく反応する。TLV：2 ppm [TWA]、A1（ACGIH，2001）である。環境への影響は記載してはいない。

アルゴンも、空気より重く酸素欠乏を引き起こす。単純窒息ガス（ACGIH，2001）である。

②酸化エチレン（ICSC No.0155）・1, 1, 1, 2-テトラフルオロエタン（ICSC No.1281）混合剤

酸化エチレンは、引火点の数値記載はないが火災性ガスとされており、空気中爆発限界3〜100 vol.％の気体である。気体は空気より重く、遠距離火災の可能性がある。酸、塩基、金属塩化物、金属酸化物の影響で激しく重合する。多くの化合物と激しく反応する。TLV：1 ppm [TWA]、A2（ACGIH，2001）である。環境への影響は、水生生物に対して毒性があるとの記載がある。

1, 1, 1, 2-テトラフルオロエタン（HFC 134a）は、高温面に触れると分解して、有機フッ素化合物のヒュームを生成する。環境への影響は、通常の使用法と異なる状況での環境中への放出を避けるとの記載がある。

③ヨウ化メチル（ICSC No.0509）単剤

引火点の記載はない。蒸気は空気より重く、酸素欠乏を引き起こすことがある。加熱や燃焼により分解し、ヨウ化水素を発生する。強酸化剤と激しく反応する。酸素（300〜500℃）、ナトリウム、亜塩素酸銀、トリアルキルホスフィンと激しく反応する。TLV：2ppm [TWA]（ACGIH，2001）である。環境への影響は記載してはいない。

まず、選定の絶対条件は以下の2点とした。

『環境負荷をできるだけ小さくしつつ、炊蒸効果を上げる』

『剥製・さく葉標本等生物資料のDNA破壊をできるだけおさえる』

前記のように、環境負荷の低減という見地から、臭化メチル全廃決定のあったことにより、新たな薬剤を使用することが新たな環境負荷を生む結果とならないことである。薬剤メーカーによれば、ヨウ化メチルは回収法による炊蒸が基本となっている。そこで抑制濃度（2 ppm；国立医薬品食品衛生研究所，2002）以下になるまで希釈処理を認めないという仕様を提案することでこの条件はクリアできると判断した。

意外と知られていないが、ヨウ化メチルを構成する元素の1つであるヨウ素の2001年の日本の生産量はクリに次いで世界第2位で、世界的31%を占める（United States Geological Survey, 2002）。ヨウ素の主要産出国である日本が、率先して資源保護を行う必要があり、博物館もこれを十分認識して努力しなければならないと考える。

また、自然系博物館資料においては、従来資料の形態保存に重点が置かれたが、近年DNA保存の必要性が急速に高まってきている。小菅（2001MS）は、ケンジゴケ・アカマツ・アラカシ・アブラナ・ホウレンソウ・ブナシメジ・ニワトリをヨウ化メチルおよび臭化メチル・酸化エチレン混合剤で炊蒸し、抽
出した全DNAの状態、PCR增幅による熗蒸処理の影響、塩基配列解析における熗蒸処理の影響を未熗蒸資料と比較し検討している。一部の植物資料を除けば、基本的にDNAの回収量を低下させること、ヨウ化メチル蒸のほうが臭化メチル・酸化エチレン混合剤による蒸蒸よりDNAへの影響が少ないことを指摘している。さらには、タンパク質を多量に含む動物資料においては、ヨウ化メチルがDNA抽出効率を低下させるタンパク質を変性させるため、DNA抽出効率が良くなるという利点も指摘している。よって、ヨウ化メチルによる蒸蒸は、臭化メチル・酸化エチレン混合剤による蒸蒸に比較して、DNA影響は小さく自然系資料に適した薬剤であると判断した。

次に、検討としては『爆発性気体の使用は不可』という条件を設定した。可燃性薬剤での熗蒸実験で火災が発生したということを伝え聞いています。作業には万全を期すことはもちろんであるが、不慮の事故による着火の可能性を確実にゼロにすることはできなかった。もし火災になった場合、焼失した資料は修復が不可能である。

群馬県富岡地域で蒸蒸中に火災が起こった場合、迅速かつ安全な消火は難しい。このような地域の消防体制も、ヨウ化メチルを選択した理由の1つであろう。

上記の条件で選定すると、現状では臭化メチルを主剤とする熗蒸薬剤に代わるものとしては、ヨウ化メチルしかない状況である。ただし、ヨウ化メチルも可燃性が存在する（表2）。14～18 vol.%かつ非常に高い着火温度のときのものという、限られた条件下のみに認められる。火花放電のような着火源に対しては、低濃度から高濃度までまったく発爆しない（日宝化学株式会社技術研究所、2001MS）。実際の蒸蒸では、蒸蒸空間が14～18 vol.%という高濃度になることはあり得ないので、ポンペや気化器の周囲を注意すれば、安全を確保することが可能である。

しかし、この薬剤にも不安がある。あまりに使用実績が少ないこと、人体への影響に関しては現在のところ詳細なデータがない（長谷川、1982；石津・山野、1993）ということである。

決定に先立ち、国内で初めて大規模な蒸蒸を行った自然系博物館である兵庫県立人と自然の博物館に行き、ヨウ化メチル蒸蒸に関する調査を行った。その結果、収蔵庫約5,000m²をヨウ化メチルで施行したが、若干の臭気以外、ほとんど問題ないとのことであった。また、ヨウ化メチル選定の経緯について聞いたところ、爆発性ガスは不可との多数意見でヨウ化メチルになったとのことであった。

以上の資料を参考にし、当館でもヨウ化メチルによって蒸蒸を行うことを決定した。

### 表2 ヨウ化メチル発爆試験一覧

<table>
<thead>
<tr>
<th>被火源</th>
<th>エネルギー程度</th>
<th>推定温度</th>
<th>試験実施濃度（爆発限界）</th>
<th>試験機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>高圧電源火花</td>
<td>15kv，1sec</td>
<td>不爆 [3～7vol.%]</td>
<td>日本ガリリット株</td>
<td></td>
</tr>
<tr>
<td>テスラコイル連続火花</td>
<td>100V，60sec</td>
<td>不爆 [6～18vol.%]</td>
<td>日宝化学株</td>
<td></td>
</tr>
<tr>
<td>スチールウール燃焼法</td>
<td>60V</td>
<td>400℃以上</td>
<td>爆発 [15～16vol.%]</td>
<td>日宝化学株</td>
</tr>
<tr>
<td>ニクロム線溶断法</td>
<td>20V，300Ω</td>
<td>800℃以上</td>
<td>爆発 [14～18vol.%]</td>
<td>日宝化学株</td>
</tr>
<tr>
<td>マグネシウムフィラメント法</td>
<td>40V</td>
<td>1000℃以上</td>
<td>爆発 [14～18vol.%]</td>
<td>日宝化学株</td>
</tr>
</tbody>
</table>
表3 尿検査値

<table>
<thead>
<tr>
<th>作業日</th>
<th>尿採取時</th>
<th>尿比重</th>
<th>尿中クレアチニン</th>
<th>尿中尿素量 (mg/l)</th>
<th>尿比重補正 (1.016)</th>
<th>クレアチニン補正 (mg/g.Cre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12月9日</td>
<td>作業前</td>
<td>1.024</td>
<td>1.776</td>
<td>0.801</td>
<td>0.534</td>
<td>0.451</td>
</tr>
<tr>
<td>12月9日</td>
<td>午前作業終了後</td>
<td>1.022</td>
<td>1.324</td>
<td>6.234</td>
<td>4.534</td>
<td>4.708</td>
</tr>
<tr>
<td>12月9日</td>
<td>午後作業終了後</td>
<td>1.025</td>
<td>1.645</td>
<td>1.018</td>
<td>0.652</td>
<td>0.619</td>
</tr>
<tr>
<td>12月11日</td>
<td>午前作業終了後</td>
<td>1.021</td>
<td>1.152</td>
<td>7.314</td>
<td>5.573</td>
<td>6.349</td>
</tr>
<tr>
<td>12月11日</td>
<td>午後作業終了後</td>
<td>1.023</td>
<td>1.628</td>
<td>14.350</td>
<td>9.983</td>
<td>8.814</td>
</tr>
<tr>
<td>12月12日</td>
<td>午前作業終了後</td>
<td>1.022</td>
<td>1.158</td>
<td>12.003</td>
<td>8.729</td>
<td>10.365</td>
</tr>
<tr>
<td>12月12日</td>
<td>午後作業終了後</td>
<td>1.015</td>
<td>0.855</td>
<td>18.499</td>
<td>19.732</td>
<td>21.636</td>
</tr>
<tr>
<td>12月13日</td>
<td>午前作業終了後</td>
<td>1.023</td>
<td>1.241</td>
<td>14.529</td>
<td>10.107</td>
<td>11.707</td>
</tr>
<tr>
<td>12月13日</td>
<td>午後作業終了後</td>
<td>1.022</td>
<td>1.368</td>
<td>16.862</td>
<td>12.263</td>
<td>12.326</td>
</tr>
</tbody>
</table>

図2 探尿日時と尿中尿素量との関係

能が低下している場合はこの作用が小さくなることが予想されるため、十分注意が必要である。呼吸器・肝臓・腎臓に疾患をもつ人は、散歩作業（散歩立ち会い）に従事しないよう努力すべきで、管理職は従事させないよう監督すべきである。

また、正しい保護具を、正しく着用し細心の注意を払って作業に望む必要があります。田中教授は、化学物質関係の散歩では、検査散歩のない規模も小さいため、作業安全に関する認識が甘いのではないかと指摘している。同教授指導の面倒の正しい装着法を図3に示すので、面倒を使用される方は参考されたい。

全作業終了後、田中教授の指示により、作業員および筆者の吸収缶について、ヨウ化メチルの脱着の有無を検査した。使用した検査管は、北川式、ヨウ化メチル検査管176Sである。方法は、吸収缶のインレット側を開けて、アウトレット側（吸入口）を吸引孔を保したゴム栓で密栓し、吸引孔から吸収液補して測定するものである。その結果、測定4缶のうち、2缶に明瞭な検査管変色による反応が認められた。そこで、測定4缶をメーカーに返送し、調査を依頼した。結果、検査管の変色はヨウ化メチルの脱着ではなく、一酸化炭素によるものと報告を得た（三光化学工業株式会社技術センター、2002MS）。

後日、筆者らが新品のヨウ化メチル用吸収缶を、北川式一酸化炭素検知管106SCで、同様に検査したところ、50ppmを大きく上回る（検知箇所の検知範囲は1〜50ppmである）一酸化炭素を検出した。なお、一酸化炭素の許容濃度は米国で25ppm（ACGIH、

— 48 —
図3 全面面体の装着法

2001年、日本で50ppm（日本産業医学会、2000）である。また、新品の臭化メチル用の吸収缶についても、筆者が一酸化炭素検知管106SCでテストしたところ、同じように50ppmを大きく上回る結果が出た。さらに、破損時間近くまで使い込まれた臭化メチル用吸収缶でもテストしたところ、35ppmの一酸化炭素が検出された。さらに、他メーカーの製品でも同様な結果が出てきたとの情報（日宝化学株式会社、私信）も得ている。

以上のことから、作業の安全を守るはずの保護具
表4 障害式1型吸収缶の通気時間と一酸化炭素濃度（温度20℃、相対湿度50％の新鮮空気を30/minの流量で通気して測定）

<table>
<thead>
<tr>
<th>吸収缶種類</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>時間 (sec)</td>
<td>CO濃度 (ppm)</td>
<td>時間 (sec)</td>
</tr>
<tr>
<td>障害式1型吸収缶 ヨウ化メチル用</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>障害式1型吸収缶 有機ガス用</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0</td>
<td>48</td>
</tr>
</tbody>
</table>

は、散布薬品のヨウ化メチル（または硫化メチル）に対しても、吸着除染できているものの、他の有害ガスである一酸化炭素を放出していることが判明した。一酸化炭素は、大気中濃度100ppm（0.01％）で中毒症状が出現し、0.15％で死亡する可能性があると言われている（大平田病院一酸化炭素中毒情 報センター、2001）。筆者ら2名が、完全に保護具（臭化メチル用吸収缶）を着用して、廃棄作業を行い、吸収缶を運搬を行った後に、吐き気・眠気・頭痛をもとめさせたことも説明がつく。

一酸化炭素の発生源は吸収缶内部に活性炭である活性炭であることが推定され、一酸化炭素の放出量は連続通気約30リットル以上でその濃度がゼロになることがわかっ（表4：三光化学工業株式会社技術センター、2002MS）。当面は使用前にアウトレット側から吸引して通気を行った後（簡便には除気しで吸うなど）、使用することで対処するしかない。これは博物館廃棄に限った問題ではないので、大至急メーカーは対処していただきたい。

４ 作業と結果

実際の廃棄作業は2001年12月9日～15日に行われた。気温が低下しているこの時期、沸点温度の高い（42.5℃；国立医薬品食品衛生研究所、2002）ヨウ化メチルは投薬が困難になるのではないかと予想された。作業を始めてみると予想通りに、気化させることは難しく、凝結した液体が少量であるが気流管内に出てくるという現象が起こった。すぐに、ポンベ温度が低い室温（17℃）に影響され、液温が低下していることに起因するものと考えられた。そこで、ヨウ化メチルポンベを加熱することで対処した。具体的にはポンベにリボンヒーターを巻き、気化器を流し時のヨウ化メチル液温を30℃前後に保つことによって解消した。

以上の対処を行う中で、筆者らと廃棄施設業者、薬剤メーカーで検討会議を行い、低温時の投薬においては以下の装置設定が現実的に最も良いと考えられるとの結論を得た。まず、気化器から出たヨウ化メチルをポンプで導き、ポンプも加熱可能のようにしておく。このポンプに対してエアーチャンバーを導入し、気化したヨウ化メチルを速やかに希釈し、投薬するという方法である。これに加え、ポンベの加熱が行われればさらに良い。

完全に気化したヨウ化メチルでは問題が起こらないが、液体で流下した場合、塩化ビニルを溶解させるので注意が必要である。液体が接触する可能性がある箇所には金属やポリエチレンなどの溶解しない素材を使用する必要がある。

ヨウ化メチルは分子量が活性炭メチルに比較して大きいため、残留しやすくなることが確認された。廃棄終了後、収蔵庫内は検出不可能な濃度まで速やかに低下したが、昆虫ドット線やプラスチックケースなど比較的密閉性の高い容器内では、抑制濃度以下に低下するまで数日を要するものがあった。この間、収蔵庫は立ち入り禁止とし、余裕を見て1週間、館空調設備にて連続排気運転を行った。
簡単ではあるが、ヨウ化メチルの資料への影響を検討した。ハロゲン水を使用した感光剤（印画紙・フィルム）に影響が出る可能性が考えられたため、これを同時に燃焼し、観察した。しかしこれを燃焼し続け、目視では変化は見られなかった。現在まで経時変化を目視について観察しているが、変化は認められていない。また、ヨウ素を含む海藻類も同様に観察した。これらも目視による変化、経時変化は認められない。

臭気については若干の異臭が生じたが、どの資料との反応によるものかは特定できなかった。1週間の排気運転後のまわる感じられないレベルになり、資料の異臭等は内部報告は出ていないので、現時点では問題なしとして判断される。

5今後

今までは、必要な量をあまり正確に検討せず、懸念的に葉剤を散布し続けてきたように考えられる。これは、これだけ葉剤をまいておけば大丈夫という「心の安心」を保っていたといええることができるのではないかか。

しかし、葉剤散布は効果の上がる方法であるが、現在葉剤以外の方法を検討し、積極的に採用していかなければならない時期にきている。高温法や低温法など比較的簡単に導入可能な方法もあり、当館でも検討を始めたところである。

必要な時期に、必要な場所に、必要な量だけ葉剤を散布する。そのためには、環境測定が必要となってくる。当館でも2002年度から環境測定を開始している。

葉剤やその他の駆除方法を議論する前に、なによりも職員の意識変革が最も重要であると考えられる。資料保存の担当者だけでなく、関係職員全員で資料保存を推進する体制は必要である。

6謝辞

日宝化学株式会社には、当館の蒸留作業に立ち会い収集した貴重なデータおよび社内資料を提供していただいた。特許化製業株式会社には、ヨウ化メチルを使用した蒸留施工に関してご討論いただいた。

文図協会女子大学の田中茂教授・北里大学的小泉洋子氏には、作業安全に関するご意見をいただき、安全に関する指導をしていただいた。兵庫県立人と自然の博物館秋山弘之博士には、ヨウ化メチル蒸蒸について貴重なご意見をいただいた。大牟田労災病院一酸化炭素中毒情報センターの志田堅四郎氏には、一酸化炭素中毒に関してご教示いただいた。匿名の読者には有益なご指摘をいただいた。以上の方々に、記して感謝する次第である。

[文献等]


石津澄子・山野優子（1993）沃化メチル取扱業務の健康管理。化学物質取扱業務の健康管理，338～345頁。財団法人産業医学振興財団。

長谷川弘道（1982）汚化メチル・沃化メチル。化学物質取扱業務と健康管理，143～150頁。財団法人産業医学振興財団。

木川りか・永山あい・山野勝次（1998）温度を利用した殺虫法（1）低温処理および高温処理による殺虫効果の検討—保存科学，38号，15～22頁。東京文化財研究所。

木川りか・永山あい・山野勝次（1999）低酸素濃度殺虫法（1）処理温度と殺虫効果の検討。保存科学，39号，9～14頁。東京文化財研究所。

国立医薬品食品衛生研究所（2002）国際化学物質安全性カード（ICSC）日本語版。

http://www.nihs.go.jp/ICSC/]

三浦定俊（2002MS）博物館・資料館における生物被害防止対策。群馬県立歴史博物館第24回文化財保存研修会資料。

日本産業衛生学会（2000）許容濃度等の勧告。

http://joh.med.uoe-u.ac.jp/oei/index.html (英文)。

日宝化学株式会社技術研究所（2001MS）ヨウ化メチルガスの爆発性について。1頁。日宝化学株式会社内部資料。

mutugoro.or.jp/~omutaro/CO1/CO1.htm].
三光化学工業株式会社技術センター（2002MS）ヨウ化メチル用吸収缶の調査結果. 5頁. 群馬県立自然史博物館依頼調査資料.